Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems
نویسندگان
چکیده
Order reduction of parametrically excited linear and nonlinear structural systems represented by a set of second order equations is considered. First, the system is converted into a second order system with time invariant linear system matrices and (for nonlinear systems) periodically modulated nonlinearities via the Lyapunov-Floquet transformation. Then a master-slave separation of degrees of freedom is used and a relation between the slave coordinates and the master coordinates is constructed. Two possible order reduction techniques are suggested. In the first approach a constant Guyan-like linear kernel which accounts for both stiffness and inertia is employed with a possible periodically modulated nonlinear part for nonlinear systems. The second method for nonlinear systems reduces to finding a time-periodic nonlinear invariant manifold relation in the modal coordinates. In the process, closed form expressions for “true internal” and “true combination” resonances are obtained for various nonlinearities which are generalizations of those previously reported for time-invariant systems. No limits are placed on the size of the time-periodic terms thus making this method extremely general even for strongly excited systems. A four degree-of-freedom massspring-damper system with periodic stiffness and damping as well as two and five degree-of-freedom inverted pendula with periodic follower forces are used as illustrative examples. The nonlinear-based reduced models are compared with linear-based reduced models in the presence and absence of nonlinear resonances. DOI: 10.1115/1.2202151
منابع مشابه
An efficient analytical solution for nonlinear vibrations of a parametrically excited beam
An efficient and accurate analytical solution is provided using the homotopy-Pade technique for the nonlinear vibration of parametrically excited cantilever beams. The model is based on the Euler-Bernoulli assumption and includes third order nonlinear terms arisen from the inertial and curvature nonlinearities. The Galerkin’s method is used to convert the equation of motion to a nonlinear ordin...
متن کاملOrder Reduction of Parametrically Excited Nonlinear Systems: Techniques and Applications
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are t...
متن کاملA New Numerical Technique for the Analysis of Parametrically Excited Nonlinear Systems
A new computational scheme using Chebyshev polynomials is proposed for the numerical solution of parametrically excited nonlinear systems. The state vector and the periodic coefficients are expanded in Chebyshev polynomials and an integral equation suitable for a Picard-type iteration is formulated. A Chebyshev collocation is applied to the integral with the nonlinearities reducing the problem ...
متن کاملDynamical SyStemS with PerioDic coefficientS: analySiS anD control
A general framework for the analysis and control of parametrically excited linear/nonlinear dynamical systems is presented. This class of problems appears in the modeling of rotorcraft blades in forward flight, asymmetric rotor-bearing systems, automotive components such as connecting rods, universal joints, asymmetric satellites, fluids under gravity modulations, etc. These dynamical systems a...
متن کاملParametrically Excited Non-linear Systems: a Comparison of Certain Methods
This paper is concerned with bifurcation and stability problems of non-linear systems. The attention is focused on parametrically excited non-linear vibrations. A comparison of C—L method with IHB technique is given on the study of local bifurcations. It is shown that the two methods give qualitatively equivalent bifurcation diagrams. ( 1998 Elsevier Science Ltd. All rights reserved
متن کامل